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We consider the distribution of nucleation times in systems with Brownian type dynamics, as described by
classical nucleation theory. This is studied for a prototype system: the two-dimensional Ising model with
spin-flip dynamics in an external magnetic field. Direct simulation results for the nucleation times, spanning
more than four orders of magnitude, are compared with theoretical predictions. In contrast to usual treatments
we determine size-dependent droplet free energies and effective transition rates for growth and shrinkage
directly from our simulations. The free energies so determined are well described by the classical Becker-
Döring expression, provided one uses an effective surface tension that exceeds the macroscopic surface tension
by up to 20%. Within this framework there is good agreement between simulation results and theoretical
predictions for the mean nucleation time. In addition we consider the short-time behavior of the nucleation
probability after an initial quench into the metastable state. We present theoretical estimates and show that
these too agree well with simulation results.

DOI: 10.1103/PhysRevE.71.031601 PACS numberssd: 64.60.Qb

I. INTRODUCTION

Homogeneous nucleation is a prototypic example of es-
cape from a metastable state through thermal activation. In
this process a stable nucleus spontaneously grows in a meta-
stable environment. It has been studied extensively, and ex-
cellent books and reviews existf1,2g. A commonly used sys-
tem for studying nucleation phenomena is the well-known
Ising model. Above the so-called critical temperature, in the
absence of an external magnetic field, up-and down-pointing
spins are roughly equally abundant. Below the critical tem-
perature, the system prefers to be in either of two states: one
state with a positive magnetization, in which most spins are
pointing up, and the other state with a negative magnetiza-
tion. In the presence of an external field one of these states is
metastable and will decay to the stable equilibrium state
through nucleation.

The dynamical and statistical characteristics of this pro-
cess are the subject ofclassical nucleation theorysCNTd,
which was founded in the first part of the last century by
Volmer and Weberf3g, Farkasf4g, Becker and Döringf5g
and Zeldovichf6g, among others. In this theory the process is
described as the stochastic growth of a droplet, which may
grow or shrink by the attachment or detachment of single
molecules. The rates for these elementary processes are as-
sumed to satisfy a detailed balance condition determined by
the free energy of the droplet. In its simplest form this free
energy consists of the following two contributions: a bulk
contribution equal to the number of particles in the cluster
times the chemical potential difference between the stable
and the metastable statesalso called the supersaturationd, and
a surface contribution equal to the surface area times the
surface tension, which is supposed to be the same as that for
coexisting states in equilibrium. The shape of the droplet is
assumed to be isotropicscircular in two, spherical in three
dimensionsd. For small droplets the surface term dominates
and the droplet free energy increases with size. For large
droplets the bulk term dominates. The free energy as a func-
tion of cluster sizeC, expressed in the number of molecules

within the cluster, will therefore have a maximum at a criti-
cal cluster sizeCx. For small supersaturation, the chemical
potential differenceDF;FsCxd−Fs0d is typically large com-
pared tokBT, with T temperature andkB Boltzmann’s con-
stant. Nucleation is thus a thermally activated process and
the nucleation rate, i.e., the average number of nucleations
per units of volume and time is suppressed by an Arrhenius
factor expf−DF / skBTdg.

Homogeneous nucleation rates are not easy to measure
experimentally, but in the literature there are many reports of
simulation work in which homogeneous nucleation rates
have been computed. Several authors claim good agreement
with classical nucleation theoryf7–9g, but many authors
mention the need for corrections to the CNT expression for
the cluster free energy. Notably, Auer and Frenkelf10g nu-
merically found that the surface tension of a fairly small
cluster of solid immersed in the liquid phase of a hard sphere
system under metastable conditions, is markably beyond the
macroscopic surface tension of an equilibrium solid-liquid
interface at the same temperature. The same had been ob-
served in real experiments on nucleation in colloidal suspen-
sionsf11g and similar results were obtained by density func-
tional and similar calculationsf12g. For the two-dimensional
Ising model Acharrya and Staufferf13g claim rough agree-
ment with CNT, but require a surface tension that is roughly
4/3 times the macroscopic value. Shneidman, Jackson, and
Beatty f14g use exact results to estimate the free energy for
very small clusters, but for larger ones they use the expres-
sion from CNT with a constant shift based on the exact small
cluster free energies. Neuhaus and Hagerf15g list several
finite-size and curvature corrections to the surface tension,
but do not evaluate their quantitative importance under spe-
cific conditions.

Here we first of all show that for the two-dimensional
Ising model under nonconserving dynamics CNT, and spe-
cifically the Becker-Döring equations, work very well, pro-
vided one uses realistic values for the cluster free energies
combined with effective transition rates that are based on
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global properties of the interface dynamics and that exhibit a
proper dependence on cluster size. Under these conditions
we find nucleation rates that differ never more than 20%
from their theoretical values, although the range of values
found spans over four decades.

In addition we calculate the effects of an initial quench
from a high temperature or positive field state into the meta-
stable state. Right after the quench only very small droplets
of the stable phase may be found. This first of all gives rise
to an asymptotic time shift in the nucleation time distribu-
tion, which can be calculated in terms of the parameters of
the Becker-Döring equations. This time shift is independent
of system size and therefore becomes relatively more impor-
tant as the system gets larger. Secondly, from the Becker-
Döring equations we also obtain the short-time probability
distribution function for nucleation after an initial quench,
which differs from the Poisson distribution that holds asymp-
totically for large timessbut still small enough that the clus-
ters that have nucleated already, cover only a negligible frac-
tion of the total surface aread. Both the asymptotic time shift
and the short-time nucleation probability thus obtained show
very good agreement to simulation results.

The organization of our manuscript is as follows. In Sec.
II, we describe the Ising model with spin-flip dynamics, the
model that we study in detail. Next, in Sec. III, we outline
the theoretical framework and apply it to our model. In Sec.
IV we compare the theoretical predictions with the results of
high-accuracy computations, and in the final section we dis-
cuss our results.

II. DETAILED DESCRIPTION OF THE MODEL

We consider the Ising model on a square lattice with lat-
eral dimensionL, periodicshelicald boundary conditions, and
an external magnetic fieldh which favors downward-
pointing spins. The Hamiltonian of this model reads

H = − Jo
ki,jl

sisj + ho
i

si , s1d

in which si = ±1 is the spin at sitei, and J is the coupling
constant. The first summation runs over all pairs of nearest-
neighbor sites; under our helical boundary conditions the
neighbors of sitei are j = i ±1 moduloN and j = i ±L modulo
N, with N=L2. Note that in the sum each pair is counted only
once. The magnetization is defined asM ;oisi; it can take
values M =−N,−N+2,… ,N. We restrict ourselves to sys-
tems in whichL is even. As a consequence,M takes only
even values, and summations over a range of possible mag-
netizations only run over even numbers, with an increment
of 2.

The system evolves in time according to single-spin-flip
dynamics with Metropolis acceptance probabilitiesf16g. If Si
is the configuration afteri proposed spin flips, a trial con-
figuration Si+18 is generated by flipping a single spin at a
random site. This trial configuration is then either accepted
sSi+1=Si+18 d or rejectedsSi+1=Sid; the acceptance probability
is given by

Pa = minf1,exp„− bhEsSi+18 d − EsSidj…g, s2d

in which b=1/skBTd with kB Boltzmann’s constant andT
temperature. Our unit of time is one Monte Carlo step per
site sMCSSd, so in one unit of timeN Monte Carlo steps are
performed andon averageeach spin is proposed to be
flipped once.

In a previous publicationf17g we applied the same
method to estimate the distribution of magnetization reversal
times in an Ising model on a finite lattice in the absence of a
magnetic field. This is a very similar activated process: the
intermediate state of high free energy in this case consists in
a state with a strip of opposite magnetization separated from
the original bulk state by two straight interfaces. Theoreti-
cally this system is somewhat easier to treat, because more is
known about straight interfaces in the absence of a field than
about the interface between a droplet and the bulk.

III. THEORETICAL FRAMEWORK

To study the behavior of nucleation times at temperatures
below the critical one we consider an ensemble of systems
prepared in configurations with no large negative clusters
presentstypically by quenching from a positive field equilib-
rium stated. For each system in the ensemble we keep track
of the sizes of all of its clusters. These are geometrical clus-
ters, defined as sets of aligned spins, interconnected by bonds
between nearest-neighbor sites and completely surrounded
by spins of opposite sign. They are equivalent to Coniglio-
Klein clustersf18g in the limit of zero temperature, and do
not differ much from these at the temperatures considered
here. The sizes of our clusters are defined as the numbers of
aligned spins contained in them. We define the nucleation
time of a system as the first time at which one of its clusters
grows beyond a given sizeA, which is comparable to but
larger than the critical cluster size for reasons that will be
made clear below. For a theoretical description we would
like to derive an expression for the probability distribution of
the nucleation time under the stochastic dynamics of the sys-
tem.

The spin-flip dynamics described in Sec. II may be repre-
sented by a master equation for the probability distribution
PsS,td of finding a system in the configurationS at time t.
Due to the huge number of possible configurations this mas-
ter equation cannot be solved analytically or even numeri-
cally for system sizes of practical interest. Therefore we re-
sort to a couple of approximations that are made standardly
in classical nucleation theory. First, we assume that we may
treat the clusters of negative spins in the system as being
independent. In this approximation, the probability that none
of the Nc clusters has grown beyond the critical size, is sim-
ply the Nc

th power of the probability that a single cluster has
not grown beyond the critical size. Secondly, following the
Becker-Döring approachf5g, we assume that the dynamics of
a single cluster may be modeled by a master equation for the
probabilityPsC,td that this cluster containsC spins at timet:

dPsC,td
dt

= GC,C+1PsC + 1,td + GC,C−1PsC − 1,td

− sGC+1,C + GC−1,CdPsC,td. s3d

By adopting this equation we make several approximations:
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we suppress all dependence of the transition rates on the
shape of the clusters and we neglect the possibilities of merg-
ing or splitting of clusters. In Sec. IV B and V we will come
back to this and argue how these effects can be accounted for
to a large extent by choosing the transition rates in Eq.s3d in
an appropriate effective way.

In order that the equilibrium distribution of cluster sizes
be a stationary solution of the master equation we impose the
condition of detailed balance

GC+1,C

GC,C+1
= exphbfFsCd − FsC + 1dgj, s4d

wherebFsCd=−lnfPeqsCd /Ng, with PeqsCd the average num-
ber of clusters of sizeC for a system forced to be in equi-
librium in the metastable statessee Sec. IV Ad. For C large
enough that it is very improbable to find more than one clus-
ter of sizeC simultaneously in the metastable system,PeqsCd
may likewise be interpreted as the probability of finding a
cluster of sizeC in it.

The long-time nucleation rate as predicted by the master
equations3d follows as the largest eigenvalueswith a minus
signd of this equation, supplemented with an absorbing
boundary atC=A. HereA is an integer larger than the critical
cluster sizeCx, chosen such thatPeqsAd@ PeqsCxd, and clus-
ters with sizeA are almost certain to nucleate. The absorbing
boundary condition is implemented by settingGA−1,A equal to
zero.

The largest eigenvalue −n of GC,C8 in Eq. s3d, as well as
the corresponding eigenvectorP0sCd, may be found by re-
quiring that the net current away from cluster sizeC assumes
the valuenP0sCd. Using conservation of probability one eas-
ily shows that this may be expressed as

jC+1,C ; GC+1,CP0sCd − GC,C+1P0sC + 1d = n o
cøC

P0scd,

s5d

n =
GA,A−1P0sA − 1d

o
cøA−1

P0scd
, s6d

where jC+1,C is defined as the net current flowing fromC to
C+1. This current may be approximated by

jC+1,C =5n

o
c=1

C

expf− bFscdg

o
c=1

Cx

expf− bFscdg

, c ø Cx,

n, c ù Cx,

s7d

because the sum on the right-hand side of Eq.s5d is domi-
nated by the terms with smallc-values, for whichP0scd is
approximately proportional to expf−bFscdg. This may be
checked in hindsight against the solution obtained. With this
approximation the equation may be solved recursively for
P0scd in terms of P0sA−1d for c=A−2,A−3,…, with the
result

P0scd
P0sA − 1d

=
GA,A−1

n
o
m=c

A−1

jm+1,m
exphbfFsmd − Fscdgj

Gm+1,m
. s8d

Since the sum overm is dominated by values close to or
larger than the critical cluster size, for whichjm+1,m is ap-
proximately equal ton, we may replace Eq.s8d by

P0scd
P0sA − 1d

= GA,A−1o
m=c

A−1
exphbfFsmd − Fscdgj

Gm+1,m
. s9d

Now substituting this into Eq.s6d we arrive at the result

n = So
m=1

A−1
expfbFsmdg

Gm+1,m
o
c=1

Cx

expf− bFscdgD−1

, s10d

where we have used the fact that the sum overc is dominated
by small values ofc to extend the sum overm to m=1. The
result in Eq.s10d is well known. It is usually derived by
considering a state with a stationary current in which mass is
inserted at a constant rate on one sidese.g., atC=0 in our
cased and taken out as soon as it reaches the absorbing
boundaryssee, e.g., Ref.f19g, Sec. IV Ed. In that case the
replacement ofjm+1,m by a constant is exact.

For arbitrary initial distributionsPsC,0d that are concen-
trated near the origin, one may give an even more accurate
representation of the long-time behavior ofPsC,td, by writ-
ing it in the form

PsC,td = kP0sCdexpf− ntg for t → `, s11d

where k is a constant which represents the component of
PsC,0d alongP0sCd if PsC,0d is decomposed in terms of the
eigenfunctions of the master equation. This gives for the
probabilitySstd that the system has not yet nucleated at time
t

Sstd = o
C=1

A−1

PsC,td = expf− nst − tddg for t → `, s12d

where td is called the delay time. The eigenfunctionP0sCd
was givenswith a different normalizationd in Eq. s8d:

c rsnd ;
n

P0sA − 1dGA,A−1
P0snd

= o
m=n

A−1

jm+1,m
exphbfFsmd − Fsndgj

Gm+1,m
, s13d

with jm+1,m given in Eq.s7d. As a consequence of the condi-
tion of detailed balance, Eq.s4d, the corresponding left ei-
genvector is obtained by multiplyingc rsnd by expfbFsndg,
or

c̃ lsnd = o
m=n

A−1

jm+1,m
expfbFsmdg

Gm+1,m
. s14d

Notice that for small values ofn this is virtually independent
of n, because only the largestm values give important con-
tributions to the sum. Using the proper normalization of the
leading eigenfunction, and approximatingPsC,0d by dC,1,
one now finds immediately thattd follows from
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expfntdg =

c̃ ls1do
n=1

A−1

hexpf− bFsndgc̃ lsndj

o
n=1

A−1

hexpf− bFsndgfc̃ lsndg2j

. s15d

Now, by subtracting unity on both sides, dividing byn, ap-
proximating sums overm from n to A−1 by sums from 1 to
A−1, where appropriate, substituting Eq.s14d and using Eq.
s7d for jm+1,m, one obtains

td =

o
n=1

A−1

o
m=1

n−1 S Wsnd
Gm+1,mWsmd o

k=1

minfm,Cxg

WskdDc̃ lsnd

o
n=1

A−1

fWsndc̃ lsndg

, s16d

with Wsnd;expf−bFsndg.

IV. SIMULATIONS AND RESULTS

For applying the above theoretical framework to nucle-
ation times in the Ising model, the two ingredients required
are sid the cluster free energiesFsCd and sii d the transition
ratesGC8,C from cluster sizesC to C8. We obtain these two
ingredients via two different computational tools.

In all our simulations, we use a technique known as mul-
tispin codingf20g, which enables us to reach long simulation
times and thus good statistics. All random numbers are gen-
erated with a lagged Fibonacci generator, as provided in Ref.
f20g.

A. Cluster free energies

We measure the distribution of cluster sizes for various
values ofb and h, in a system with 64364 spins. We are
actually only interested in the distribution of clusters smaller
than a certain sizeA, which was discussed in Sec. III. There-
fore we define a cutoff cluster sizeCmax, which is typically
chosen to be 300. We modify our algorithm in the following
way: starting with a configurationSi we perform a fixed
numberM of Monte Carlo steps, and measure the sizes of all
the clusters of down-spins in the system. If there is a cluster
with more thanCmax spins we reject the new configuration
and chooseSi+1=Si. Otherwise we accept the new configu-
ration as ourSi+1. In all cases we add the sizes of the clusters
in Si+1 to a histogram. After many repetitions of this loop we
find the free energyFsCd from

bFsCd = − ln
kNsCdl

N
, s17d

wherekNsCdl is the average number of clusters of sizeC in
the system withN sites.

If Cmax is chosen too large, the various clusters in the
system influence each other. In particular, excluded volume
effects inside and around large clusters suppress larger clus-
ters in the metastable state more than smaller ones. As a
consequence the distribution of cluster sizes depends on
Cmax. To determine whether a certain value ofCmax is al-

lowed, we check that the free energy curve coincides with
the same curve, obtained with a lower value forCmax.

Figure 1 shows our measurements for the free energy ac-
cording to Eq.s17d as a function of cluster size, for some
combinations of temperature and external field.

For large clusters, one may expect that classical nucle-
ation theory can be used. At not too low temperatures the
clusters on average are nearly circular in shape. The free
energy is then approximated by the Becker-Döring expres-
sion f5g

FsCd < F0 + 2sÎpC − 2hC, s18d

wheres is the excess free energy of the interface per unit
length, andh the strength of the external field.

Strictly speaking, in order to account correctly for the
difference between the free energies of the metastable and
the stable phase, one should replace 2hC by 2hCs2ms−1d,
with ms the average spin per lattice site. At the temperatures
considered here, however,ms is very close to unity, so this
correction is very small. In two dimensions there are also
physical contributions to this term, resulting from the Gibbs-
Thompson effectscompression of the cluster under the influ-
ence of surface tensiond and from Tolman, or curvature cor-
rectionsf21g. We fittedF0 and s to the data in Fig. 1, and
added the corresponding curves as lines in the same figure.
The measurements are well fitted by the curves, as long as
the cluster size is not too small. However as noted before by
Shneidmanet al. f14g, the surface tensions obtained in this
way are larger than those given by the Onsager expression
f22g

s = 2J + b−1 ln tanhsbJd, s19d

valid for long horizontal or vertical interfaces, and zero ex-
ternal field ssee Fig. 2d. At the temperatures we considered
the surface tension is known to be almost isotropicf23g, so
anisotropy effects cannot explain this difference. As sug-
gested by Fig. 2 both field dependence of the surface tension
and corrections due to the finite size of the clusters play a
role here. Note that similar corrections for the surface tension

FIG. 1. Free energy as a function of cluster size in the 64364
system atbJ=0.56 andh=0.06s3d, bJ=0.58 andh=0.08ssd, and
bJ=0.53 andh=0.08s+d. The lines represent the Becker-Döring
expression, Eq.s18d, with fitted valuess=0.93, 1.00, and 0.88, and
F0=12.3, 11.9, and 13.4.
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on a finite cylinder are present already in Onsager’s exact
solutionf22g. In Ref. f17g an explicit plot of this was given.
For a precise determination of nucleation rates these correc-
tions are quite important. They may easily cause a change by
a few orders of magnitude in the values of average nucle-
ation rates. We will address these issues in more detail in a
separate paperf24g.

B. Interface diffusion coefficient

The second ingredient required in the theoretical frame-
work of Sec. III is the rateGC+1,C of cluster growth. To
estimate this rate we study the diffusion of a single interface
in a system with anti-periodic boundary conditions in the
absence of an external field, as described inf17g. The loca-
tion of the interface is obtained from the magnetizationM.
The diffusion coefficientD is defined as

D = lim
t→`

F kfMstd − Ms0dg2l
2t

G . s20d

This diffusion coefficient is found, to a good approximation,
to depend linearly on the length of the interfaceB:

DsB,L,bJd = gsbJdB + c, s21d

where the constantc was added to allow for potential finite-
size effects. In an appendix we show that such corrections
are to be expected indeed, on the basis of a simple model
calculation for a two-dimensional BCSOS model. One might
expect small corrections to Eq.s21d due to the helical bound-
ary condition. However, as mentioned already, at the tem-
peratures studied the surface tension is almost perfectly iso-
tropic. Therefore the chief effect of the helical boundary
conditions is an extension of the interface length toÎB2+1.
The effect of this is exactly compensated by the fact that the
relevant motion of the interface is not orthogonal to its av-
erage orientation, but under a small angle with it. The results
for gsb ,Jd for various temperatures are plotted in Fig. 3.

To arrive at an estimate for the rateGC+1,C for cluster
growth and shrinkage, we assume that the diffusion coeffi-

cient neither depends on the external field nor on the shape
of the interfacesstraight or circulard, but only on the length
of the cluster boundary, for which we use 2ÎpC, assuming
that the shape of the cluster is almost circular.

This approximation neglects the possibility of having a
few positive spins inside the clusters, but at the temperatures
studied this will at most amount to a systematic underesti-
mate of the boundary length by a few percent. For large
clusters the assumption of circular shape should be very
good. From Eqs.s10d ands16d we see that the contributions
from small clusters to the expressions forn andtd are almost
negligible, and inaccuracy of the estimates of their boundary
lengths is not very important. This then gives rise to a jump
rate

GC+1,C =
gsbJd

4
2ÎpC. s22d

The factor 4 arises because the jumps in magnetization go by
units of 2. Alternatively, instead ofGC+1,C we could have
identified GC,C+1 throughD. The detailed balance condition
s4d causes these quantities to be slightly different. However,
for C-values close to the free energy maximum, which are
weighted most strongly, their difference becomes very small.
In addition there will be some compensating effects, because
for CùCx one hasGC+1,C.GC,C+1 whereas forC,Cx this is
just the other way around.

C. Nucleation rates

To measure nucleation rates, we first bring the system into
equilibrium in the presence of a magnetic field. At timet
=0, we then reverse all the spinssequivalent to an instanta-
neous reversal of the magnetic fieldd so that the system is
near its metastable equilibrium. We measure the time the
system needs to reach the magnetization corresponding to
the stable equilibrium.

Nucleation has taken place as soon as a cluster has grown
well beyond the critical nucleus size. Once that happens, the
relatively small systems in our simulations will quickly

FIG. 2. Ratio of the surface tension obtained by fitting the free
energy curve and the theoretical value given in Eq.s19d, as a func-
tion of bJ. Different symbols denote different strengths of the ex-
ternal field: h=0.05ssd, h=0.06shd, h=0.07sLd, h=0.08s+d, h
=0.09sPd, andh=0.10s3d.

FIG. 3. Monte Carlo measurements of the diffusion coefficient
per interface lengthgsbJd, as a function of inverse temperaturebJ.
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equilibrate in the state in which most spins align with the
external field. Since monitoring the size of the biggest cluster
is computationally demanding, we monitor instead the total
magnetization, and conclude that nucleation has taken place
as soon as it has reached a value corresponding to the stable
equilibrium.

We make a histogram of all the measured times.
Figure 4 shows that at long times the decay functionfstd

behaves asfstd,exps−nstd. Here, we focus on the long-time
behavior, and are specifically interested in the asymptotic
nucleation ratens. We obtain this quantity via a fitting pro-
cedure, in which we ignore the data up to a timet0, chosen
such that fstd shows exponential time behavior fort. t0.
Then we determine the timet8 at which half of the remaining
events have taken place. We then obtain the first nucleation
time t;ns

−1 from t=st8− t0d / lns2d. Instead we could have
made a linear fit of all the data points beyondt0, but this
makes no significant difference. Table I gives the measured
first nucleation timest1. In the same table, we also report the
estimated first nucleation timest2=skNclnd−1 with n as ob-
tained in Eq.s10d and kNcl;oC=1

A NsCd the average number
of clusters in the system, as determined from our simulation
data. Finally we also give the ratiot2/t1. The table shows
that, while the values of the first nucleation times span four
decades in time, the estimated and measured first nucleation
times agree mostly within 20%, and in many cases even
better.

D. Short-time behavior

Besides the long-time exponential behavior of the first
nucleation probability, we also studied the deviations from
this behavior at short times. To do so we solved the master
equations3d for the time evolution of one cluster numeri-
cally, with the initial condition that the cluster consists of a
single spin:

PsC,0d = dC,1. s23d

We then computed the cumulative probability distribution

Pnucs1,td that the cluster has grown beyond a certain size
Cmax during time t. The corresponding probability distribu-
tion for the nucleation of one ofNc statistically independent
clusters atCmax, at timet, is given by

FIG. 4. Histogram of the timeDt elapsed before nucleation oc-
curs, at inverse temperaturebJ=0.54 and external field strengthh
=0.08, in a system with 64364 sites. The straight line is a fit, given
by nsDtd,expsDt /1990d.

TABLE I. Measured valuesst1d and estimated valuesst2d for
the nucleation times in the 64364 system.

bJ h t1 t2 t2/t1

0.51 0.04 1.833104 2.263104 1.234

0.51 0.05 3.353103 3.843103 1.146

0.51 0.06 9.843102 1.143103 1.163

0.52 0.04 1.073105 1.093105 1.019

0.52 0.05 1.133104 1.313104 1.153

0.52 0.06 2.843103 3.573103 1.257

0.52 0.07 8.513102 1.093103 1.276

0.52 0.08 3.963102 4.493102 1.134

0.53 0.05 4.153104 4.793104 1.153

0.53 0.06 8.943103 9.473103 1.059

0.53 0.07 2.313103 2.573103 1.111

0.53 0.08 8.983102 9.593102 1.068

0.54 0.05 1.733105 2.133105 1.228

0.54 0.06 2.903104 3.113104 1.071

0.54 0.07 6.693103 7.273103 1.087

0.54 0.08 2.173103 2.323103 1.068

0.55 0.05 8.033105 1.133106 1.410

0.55 0.06 9.573104 1.083105 1.126

0.55 0.07 1.973104 2.083104 1.054

0.55 0.08 5.603103 5.983103 1.070

0.55 0.09 2.053103 2.173103 1.058

0.56 0.05 4.023106 4.593106 1.140

0.56 0.06 3.783105 4.173105 1.103

0.56 0.07 5.813104 6.443104 1.109

0.56 0.08 1.483104 1.573104 1.058

0.56 0.09 4.923103 5.113103 1.038

0.57 0.06 1.473106 1.363106 0.927

0.57 0.07 1.843105 1.983105 1.080

0.57 0.08 4.143104 4.403104 1.062

0.57 0.09 1.243104 1.243104 1.000

0.57 0.10 4.023103 4.533103 1.128

0.58 0.06 5.803106 6.603106 1.139

0.58 0.07 6.183105 5.723105 0.926

0.58 0.08 1.103105 1.263105 1.143

0.58 0.09 3.063104 3.113104 1.015

0.58 0.10 1.133104 1.063104 0.938

0.59 0.07 2.253106 2.483106 1.104

0.59 0.08 3.493105 4.223105 1.209

0.59 0.09 8.473104 8.363104 0.987

0.59 0.10 2.313104 2.473104 1.068

0.60 0.08 1.043106 1.193106 1.145

0.60 0.09 2.053105 2.523105 1.229

0.60 0.10 5.813104 6.723104 1.156
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1 − PnucsNc,td = f1 − Pnucs1,tdgNc. s24d

The quantityPnucsNc,td should be equal to the cumulative
distribution of nucleation times, if we define nucleation as
the first occurrence of a cluster ofCmaxspins anywhere in the
system.

We have compared this result with the results of direct
simulations atbJ=0.54 andh=0.08, for three different sys-
tem sizes: 32332, 64364, and 1283128. In all cases the
starting configuration was a system in which all spins are
antiparallel to the external field. Within a few time steps this
develops into a quasiequilibrium distribution for the small
clusters. For the system sizes studied presently typical nucle-
ation times are in the order of a hundred time steps, so the
fact that we started from clusters of size zero rather than
unity makes no real difference. Figure 5 shows the results.
Here the parameterNc was determined in the same simula-
tions that were used to obtain the free energy as a function of
cluster size.

The asymptotic slopes of the curves in the top panel of
Fig. 5 correspond to the nucleation rates. The times at which
straight-line fits to these curves cross 1−Pnuc=1 correspond
to the waiting timestd, as introduced in Eq.s12d. There is
excellent agreement between the direct simulations and the
parameter-free theoretical framework: The theoretical predic-
tion obtained with Eq.s16d is td=234 MC time units, while

the fits vary betweentd=228 and 239 MC time units. Also
the behavior at short times is well described by the theoret-
ical framework, as is evidenced in the bottom panel of Fig. 5.

For the case of the Becker-Döring form of the cluster free
energy, as given in Eq.s18d the delay time has been calcu-
lated before by Shneidmanet al. in Ref. f9g, in the region
where A@Cx. sThese authors call it the lag time.d Under
these conditions our expressions16d can be shown to reduce
to

td =
4kBTCx

1/2

gsbJdÎp
FÎ A

Cx
+ lnh2bhÎsA − CxdCxj + cG , s25d

with c a constant of order unity. For largeA this fully agrees
indeed with the expression of Ref.f9g. However, notice that
Eq. s16d is very flexible. It holds for a wide range of forms of
the free energy function and for arbitrary values ofA and it
can be evaluated numerically very easily.

The comparison of nucleation probabilities at late times
was discussed in the preceding subsection.

V. DISCUSSION

In this paper we showed that for two-dimensional Ising
models with spin-flip dynamics classical nucleation theory
provides an excellent description of nucleation time distribu-
tions, provided a realistic description is used for the free
energy of the growing droplets. We determined this free en-
ergy from cluster size distributions in equilibrium Monte
Carlo simulations and found that it may be fitted well by the
Becker-Döring expression, provided one uses surface ten-
sions that are 10 to 20% higher than the surface tension of a
bulk interface at zero field. Similar conclusions have been
reached by Shneidman, Jackson, and Beattyf9g, but the
present paper goes into much further detail in analyzing both
the cluster size dependence of the free energy and the depen-
dence on cluster size and field strength of the effective jump
rates occurring in the Becker-Döring equations. More re-
cently Auer and Frenkelf10g studied crystal nucleation in
colloidal hard sphere systems and also determined cluster
free energies by monitoring the frequency of occurrence of
clusters of a given size. Like us they could fit the resulting
curves quite well by a Becker-Döring expression, with an
effective surface tension. In their case the excess over the
bulk surface tension at zero supersaturation is about 20% to
40%. They attribute the difference to a densitysor chemical
potentiald dependence of the interfacial tension between the
metastable and the stable state. In our case this corresponds
to a magnetic field dependence. In Fig. 2 we see that such a
dependence indeed appears to be present in our system, but
quite definitely there are other corrections, due to finite clus-
ter size, and there must also be size-independent Gibbs-
Thompson and Tolman corrections. This will be discussed in
more detail in a separate paperf24g, together with results for
three-dimensional systems.

A point one may question is whether the assumption of
independent noninteracting clusters holds even for clusters of
small size. This may indeed be doubted, but fortunately, at
least for the asymptotic nucleation frequencyknNcl this is

FIG. 5. 1−Pnucstd obtained from the time evolution of one clus-
ter ssolid linesd according to the master equations3d combined with
Eq. s24d, and by direct simulation of systems with 32332, 64
364, and 1283128 spinssthe dotted linesd at bJ=0.54 andh
=0.08. In both cases, the highest of the three curves corresponds to
the smallest system, and the lowest one to the largest system. The
lower plot shows the same data, but focuses on short times.
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not really relevant. One may choose to define as clusters only
those clusters that have a sizecùm0, with m0 chosen such
that clusters of this size already are very rare, but still
expfbFsm0dg!expfbFsCxdg. From Eqs.s10d ands17d it then
follows that

nm0
=

o
c=1

Cx

Nc

o
c=m0

Cx

Nc

n,

since the terms withm,m0 in the first sum in Eq.s10d
basically do not contribute. As a consequence of this the
asymptotic nucleation rate in the system is independent of
the choice ofm0.

For the short-time nucleation rate the free energy of small
clusters is important indeed, especially if one starts from a
state of zero magnetization. However, if one starts from a
quasiequilibrium distribution representing the state after a
sudden reversal of the magnetic field, the short-time behavior
will be dominated by clusters that were fairly large at the
outset and again Eq.s17d may be trusted. Inf25g Van
Beijeren gave explicit expressions for the short-time behav-
ior, which may be used if the latter is well approximated by
a diffusion equation in an external potential. In the present
case these cannot be used, since on the relevant time scales
the hopping process between neighboring cluster sizes is not
well-approximated by a diffusion process. And since the
hopping rates depend on cluster size no exact expressions for
the short-time behavior are available. But the numerical so-
lution of the master equations3d gives a very good agree-
ment with the results from our Monte Carlo simulation of the
nucleation process, as was shown in Fig. 5.

Besides the free energy as a function of cluster size our
calculations require the transition ratesGC,C±1 between
neighboring values of the cluster size. These we estimated by
setting them proportional to the mean circumference of a
cluster, determining the proportionality constant from the
simulated mobility of a straight interface in cylindrical ge-
ometry and imposing the detailed balance conditions4d.

In our estimations we have been using a number of as-
sumptions, whose validity is not guaranteed under all condi-
tions.

Strong fields should modify the diffusion coefficient; this
effect is neglected. The freedom to modify the field strength
within the metastable region is limited though, and long
nucleation times, as seen mostly in real experiments, require
weak fields.

The diffusion coefficient is assumed to be determined by
the size of the cluster alone, and is calculated on the assump-
tion that its shape is strictly spherical. This requires that the
temperature is not too low, because at very low temperatures
the equilibrium shape of the cluster is more square than cir-
cular f23g. sThis however, is an effect that may easily be
corrected for without making any basic changes in the
theory.d On the other hand the temperature should not be too
close to the critical temperature for shape fluctuations to be
reasonably small. To some extent these fluctuations are taken

into account, since our calculation of the diffusion coefficient
is done for a fluctuating interface around a cylinder. But it is
by no means certain that the fluctuations of a circular inter-
face are in all aspects comparable to those of the interface
around the cylinder.

It may happen that a cluster splits up or that two clusters
merge, corresponding in our theoretical framework to non-
zero transition ratesGC,C+i andGC+i,C with i .1. This effect
also is partly accounted for through the numerical determi-
nation of the diffusion constant on a cylinder, but especially
for larger clusters the difference in geometry may cause ad-
ditional effects. However, these will only become important
in systems that contain a sizable density of clusters of spins
aligned with the external field. Hence, also this approxima-
tion can be trusted least near the critical point.

No memory effects are accounted for explicitly. For spin-
flip dynamics, memory effects will chiefly be due to the in-
fluence of shape fluctuations on the transition rates. Since
shape fluctuations on larger length scales will decay only
slowly, these may be fairly long-lasting effects. Again, our
way of determining the diffusion coefficient will take many
of these effects into account implicitly, but memory effects
involving large shape fluctuations may be different for the
present cluster geometry. For magnetization conserving dy-
namics sconsisting, e.g., of local spin exchangesd much
stronger memory effects exist due, e.g., to the effect that a
spin that is released from a large cluster has high probability
of reattaching to it soon.

Under conditions in which the effects above are negli-
gible, our theoretical framework is capable of estimating
nucleation rates with an accuracy in the range of 20%. The
small systematic overestimation by about 10% of the nucle-
ation time by theory may have several causes. The radius of
a cluster will be slightly larger than our estimate because
especially a large cluster will typically contain a few holes in
its interior. Since the equilibrium magnetization is always
larger than 0.92 for the temperatures studied, the density of
vacancies in the cluster is less than 4%, and hence the in-
crease in interface length due to holes is less than 2%. Also
the assumptions that the diffusion coefficient is independent
of the magnetic field and of the orientation of the interface
may be not entirely correct. At low temperatures a diagonal
interface is much more mobile than a straight one, but at the
fairly elevated temperatures studied here one would not ex-
pect a large orientation dependence. Further there could be
effects from the possibility of cluster splittings and mergings,
though some of these are accounted for through our numeri-
cal determination of the diffusion constant on a cylinder.

We are currently extending our investigations to two-
dimensional Ising systems with magnetization-conserving
dynamics as well as to three-dimensional Ising systems.

APPENDIX

To illustrate the dependence of the interface diffusion co-
efficient on the system size and on the type of boundary
conditions, as discussed in Sec. IV B, we consider diffusion
in a two-dimensional BCSOS model with stochastic dynam-
ics. This model is much simpler than the Ising model and
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allows for an explicit determination of the diffusion constant
as a function of system size and helicity conditions. It is
illustrated in Fig. 6.

An interface consists of a sequence of straight segments
with unit length, oriented with an angle of145° sor “up”d or
245° sor “down”d with respect to the horizontal axis; it sepa-
rates a completely filled crystal phase from a completely
empty vacuum. The interface dynamics consists of evapora-
tion of crystal sites at “peak sites”sconsecutive segments
oriented up and downd and the deposition of such units at
“valley sites” sconsecutive segments oriented down and upd.
When the rates of evaporation and of deposition are equal,
the interface performs normal diffusion in the vertical direc-
tion, corresponding to a diffusive time evolution of the total
mass below the interface. The diffusion constant for this pro-
cess is easily seen to be equal to the average number of peaks
sequal to the number of valleysd in the interface. The deter-
mination of this number in equilibrium is a simple combina-
torial problem. However, one should treat the boundary con-
ditions properly. In the case of periodic boundary conditions
in the horizontal direction, the total numbers of segments up
and down have to be equal. Helical boundary conditions may
be imposed by requiringm segments up andn segments
down, with mÞn; we will call these boundary conditions
sm,nd. The equilibrium distribution assigns equal weights to

all configurations with the proper values ofm and n; one
easily sees that this satisfies the detailed balance conditions
for the chosen jump rates. The diffusion coefficient may now
be expressed as

Dsm,nd = Gngsn,md, sA1d

with G the rate of evaporation and deposition, andngsn,md
the average number of peak sites or valley sites in the sys-
tem. For ngsn,md a simple recursion relation is obtained
through the following reasoning: all configurations with
boundary conditionssm,nd may be constructed from all con-
figurations withsm,n−1d by adding a down segment at the
position just following one of them up segments.sIn fact
each new configuration is obtained preciselym times this
way, but that does not change the reasoning.d If the segment
is added at the end of a cluster of up segments it does not
increase the number of peaks. On average there arengsn
−1,md positions where this will happen. In all other cases
the number of peaks is increased by one. As a result one
obtains the recursion relation

ngsn,md = ngsn − 1,md + 1 −
ngsn − 1,md

m

= 1 +
m− 1

m
ngsn − 1,md. sA2d

One easily finds that this recursion relation is solved by

ngsn,md = mF1 −Sm− 1

m
DnG . sA3d

Whenm is large this yields

ngsn,md = mS1 −
1

e
D +

1

2e
,

for periodic boundary conditionssn=md, and

ngsn,md = mS1 −
1

e
D −

1

2e

for helical boundary conditions withn=m±1. For the Ising
model these results can be applied directly to the case of
sloped boundaries at very low temperatures, but for higher
temperatures calculations would become much harder. Our
main point here is to show that generically a constant term is
to be expected in Eq.s21d, in addition to a linear one.
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