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Nucleation times in the two-dimensional Ising model
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We consider the distribution of nucleation times in systems with Brownian type dynamics, as described by
classical nucleation theory. This is studied for a prototype system: the two-dimensional Ising model with
spin-flip dynamics in an external magnetic field. Direct simulation results for the nucleation times, spanning
more than four orders of magnitude, are compared with theoretical predictions. In contrast to usual treatments
we determine size-dependent droplet free energies and effective transition rates for growth and shrinkage
directly from our simulations. The free energies so determined are well described by the classical Becker-
Ddéring expression, provided one uses an effective surface tension that exceeds the macroscopic surface tension
by up to 20%. Within this framework there is good agreement between simulation results and theoretical
predictions for the mean nucleation time. In addition we consider the short-time behavior of the nucleation
probability after an initial quench into the metastable state. We present theoretical estimates and show that
these too agree well with simulation results.
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I. INTRODUCTION within the cluster, will therefore have a maximum at a criti-

Homogeneous nucleation is a prototypic example of escal cIu_ster_ sizeC,. For small supers_atura_\tion, the chemical
cape from a metastable state through thermal activation. [Rotential difference\F = F(C,)-F(0) is typically large com-
this process a stable nucleus spontaneously grows in a metdared toksT, with T temperature anétz Boltzmann's con-
stable environment. It has been studied extensively, and estant. Nucleation is thus a thermally activated process and
cellent books and reviews exigt,2]. A commonly used sys- the nucleation rate i.e., the average number of nucleations
tem for studying nucleation phenomena is the well-knownper units of volume and time is suppressed by an Arrhenius
Ising model. Above the so-called critical temperature, in thefactor exfp—AF/(kgT)].
absence of an external magnetic field, up-and down-pointing Homogeneous nucleation rates are not easy to measure
spins are roughly equally abundant. Below the critical tem-experimentally, but in the literature there are many reports of
perature, the system prefers to be in either of two states: or@mulation work in which homogeneous nucleation rates
state with a positive magnetization, in which most spins ardhave been computed. Several authors claim good agreement
pointing up, and the other state with a negative magnetizawith classical nucleation theor{7—9], but many authors
tion. In the presence of an external field one of these states imention the need for corrections to the CNT expression for
metastable and will decay to the stable equilibrium statehe cluster free energy. Notably, Auer and FrenKel| nu-
through nucleation. merically found that the surface tension of a fairly small

The dynamical and statistical characteristics of this pro<luster of solid immersed in the liquid phase of a hard sphere
cess are the subject alassical nucleation theoryCNT), system under metastable conditions, is markably beyond the
which was founded in the first part of the last century bymacroscopic surface tension of an equilibrium solid-liquid
Volmer and Webelf3], Farkas[4], Becker and Dorind5] interface at the same temperature. The same had been ob-
and Zeldovicl{ 6], among others. In this theory the process isserved in real experiments on nucleation in colloidal suspen-
described as the stochastic growth of a droplet, which magions[11] and similar results were obtained by density func-
grow or shrink by the attachment or detachment of singldgional and similar calculationsl2]. For the two-dimensional
molecules. The rates for these elementary processes are #sing model Acharrya and Stauff¢t3] claim rough agree-
sumed to satisfy a detailed balance condition determined bgnent with CNT, but require a surface tension that is roughly
the free energy of the droplet. In its simplest form this free4/3 times the macroscopic value. Shneidman, Jackson, and
energy consists of the following two contributions: a bulk Beatty[14] use exact results to estimate the free energy for
contribution equal to the number of particles in the clustervery small clusters, but for larger ones they use the expres-
times the chemical potential difference between the stablgion from CNT with a constant shift based on the exact small
and the metastable sta@dso called the supersaturatjpand  cluster free energies. Neuhaus and Halded] list several
a surface contribution equal to the surface area times thfnite-size and curvature corrections to the surface tension,
surface tension, which is supposed to be the same as that fout do not evaluate their quantitative importance under spe-
coexisting states in equilibrium. The shape of the droplet isific conditions.
assumed to be isotropigcircular in two, spherical in three Here we first of all show that for the two-dimensional
dimensiong For small droplets the surface term dominateslsing model under nonconserving dynamics CNT, and spe-
and the droplet free energy increases with size. For largeifically the Becker-Doéring equations, work very well, pro-
droplets the bulk term dominates. The free energy as a funcrded one uses realistic values for the cluster free energies
tion of cluster sizeC, expressed in the number of moleculescombined with effective transition rates that are based on
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global properties of the interface dynamics and that exhibit a P,=min[1,exg— B{E(S,) - E(S)H], (2
proper dependence on cluster size. Under these conditions B ) ,
we find nucleation rates that differ never more than 204" Which B=1/(kgT) with kg Boltzmann's constant and@

from their theoretical values, although the range of valuedemperature. Our unit of time is one Monte Carlo step per
found spans over four decades. site (MCSS), so in one unit of timé\ Monte Carlo steps are

In addition we calculate the effects of an initial quench performed andon averageeach spin is proposed to be

X e . flipped once.
from a high temperature or positive field state into the meta In a previous publicatior{17] we applied the same

zﬁalg s?tt:tt)(lae' ISIhgahStearfrt](Zrytftl)Z ?sf:ghT%?slyﬁ\rlset%nglagi\%gprliitﬁwetho_d to estimate the distribution of magnetization reversal
S g ' . . VES NS&imes in an Ising model on a finite lattice in the absence of a
to an asymptotic time shift in the nucleation time distribu- .\, ynetic field. This is a very similar activated process: the
tion, which can be calculated in terms of the parameters Ofyiermediate state of high free energy in this case consists in
the Becker-Déring equations. This time shift is independeny state with a strip of opposite magnetization separated from
of system size and therefore becomes relatively more impokne original bulk state by two straight interfaces. Theoreti-
tant as the system gets larger. Secondly, from the Beckega)ly this system is somewhat easier to treat, because more is
Doring equations we also obtain the short-time probabilityknown about straight interfaces in the absence of a field than
distribution function for nucleation after an initial quench, about the interface between a droplet and the bulk.
which differs from the Poisson distribution that holds asymp-
totically for large timegbut still small enough that the clus- Ill. THEORETICAL FRAMEWORK
ters that have nucleated already, cover only a negligible frac- To study the behavior of nucleation times at temperatures
tion of the total surface argaBoth the asymptotic time shift below the critical one we consider an ensemble of systems
and the short-time nucleation probability thus obtained shovprepared in configurations with no large negative clusters
very good agreement to simulation results. presenttypically by quenching from a positive field equilib-
The organization of our manuscript is as follows. In Sec.rium statg¢. For each system in the ensemble we keep track
Il, we describe the Ising model with spin-flip dynamics, the of the sizes of all of its clusters. These are geometrical clus-
model that we study in detail. Next, in Sec. Ill, we outline ters, defined as sets of aligned spins, interconnected by bonds
the theoretical framework and apply it to our model. In Secbetween nearest-neighbor sites and completely surrounded
IV we compare the theoretical predictions with the results oy spins of opposite sign. They are equivalent to Coniglio-

high-accuracy computations, and in the final section we disKlein clusters[18] in the limit of zero temperature, and do
cuss our results. not differ much from these at the temperatures considered

here. The sizes of our clusters are defined as the numbers of
aligned spins contained in them. We define the nucleation
Il. DETAILED DESCRIPTION OF THE MODEL time of a system as the first time at which one of its clusters
grows beyond a given siz8, which is comparable to but
We consider the Ising model on a square lattice with latdarger than the critical cluster size for reasons that will be
eral dimensiorL, periodic(helical) boundary conditions, and made clear below. For a theoretical description we would
an external magnetic fieldh which favors downward- like to derive an expression for the probability distribution of

pointing spins. The Hamiltonian of this model reads the nucleation time under the stochastic dynamics of the sys-
tem.
The spin-flip dynamics described in Sec. Il may be repre-
H=-1X ss+hXs, (1) sented by a master equation for the probability distribution

i ' P(S,t) of finding a system in the configuraticd at timet.

_ _ _ _ o ) ) Due to the huge number of possible configurations this mas-
in which s=+1 is the spin at site, andJ is the coupling  ter equation cannot be solved analytically or even numeri-
constant. The first summation runs over all pairs of nearesicq)y for system sizes of practical interest. Therefore we re-
neighbor sites; under our helical boundary conditions the&ort to a couple of approximations that are made standardly
neighbors of sit¢ arej=i+1 moduloN andj=i£L modulo jn classical nucleation theory. First, we assume that we may
N, with N=L?. Note that in the sum each pair is counted onlyyreat the clusters of negative spins in the system as being
once. The magnetization is defined Ms=2;s;; it can take  jndependent. In this approximation, the probability that none
valuesM=-N,-N+2,...,N. We restrict ourselves to sys- qf the N, clusters has grown beyond the critical size, is sim-
tems in whichL is even. As a consequende, takes only iy the N power of the probability that a single cluster has
even values, and summations over a range of possible magyt grown beyond the critical size. Secondly, following the
netizations only run over even numbers, with an incremengecker-Déring approadts], we assume that the dynamics of
of 2. a single cluster may be modeled by a master equation for the

The system evolves in time according to single-spin-flippropability P(C, 1) that this cluster containg spins at time:
dynamics with Metropolis acceptance probabilifig6]. If S

is the configuration after proposed spin flips, a trial con- dP(C,H) _ _
figuration S, is generated by flipping a single spin at a dt FecuP(C+10+TecPC-10
random site. This trial configuration is then either accepted B
(S+1=S,,) or rejected(S.,=S); the acceptance probability (TerctTe-10P(CY). )

is given by By adopting this equation we make several approximations:
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we suppress all dependence of the transition rates on the
shape of the clusters and we neglect the possibilities of merg-

ing or splitting of clusters. In Sec. IV B and V we will come

back to this and argue how these effects can be accounted fgt

to a large extent by choosing the transition rates in(Bpin
an appropriate effective way.

In order that the equilibrium distribution of cluster sizes
be a stationary solution of the master equation we impose the

condition of detailed balance

Feoic

1—‘C,C+l

whereSF(C)=-In[P.{C)/N], with P.(C) the average num-
ber of clusters of siz&€ for a system forced to be in equi-
librium in the metastable staisee Sec. IV A For C large

expB[F(C) -F(C+ D]}, (4)
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A-1

S| exdAFm-FE)

I‘m+1,m

Po(C) _ Fap1
Po(A-1)

(8

v m=C

nce the sum ovem is dominated by values close to or
larger than the critical cluster size, for whigh., is ap-
proximately equal ta, we may replace Ed8) by

Po©) ..~ explBlF(m) - FO)l}
Po(A- 1) "FA'A‘lmz-c '

9

I‘m+1,m

Now substituting this into Eq6) we arrive at the result

A-1 Cy -1
v= (E WE expl - BF(C)]> . (10
m=1 m+1lm c=1

where we have used the fact that the sum @visrdominated

enough that it is very improbable to find more than one clus~Dy small values of to extend the sum oven to m=1. The

ter of sizeC simultaneously in the metastable systétg,(C)

result in Eq.(10) is well known. It is usually derived by

may likewise be interpreted as the probability of finding acqgnsidering a state with a stationary current in which mass is

cluster of sizeC in it.

inserted at a constant rate on one siday., atC=0 in our

The long-time nucleation rate as predicted by the masteéase and taken out as soon as it reaches the absorbing

equation(3) follows as the largest eigenval@eith a minus

boundary(see, e.g., Ref[19], Sec. IV B. In that case the

sign of this equation, supplemented with an absorbingreplacement Of ms1m DY @ constant is exact.

boundary aC=A. HereA is an integer larger than the critical
cluster sizeC,, chosen such thd.A) > P¢4(C,), and clus-

For arbitrary initial distribution?(C, 0) that are concen-
trated near the origin, one may give an even more accurate

ters with sizeA are almost certain to nucleate. The absorbingrepresentation of the long-time behaviorRAC, t), by writ-

boundary condition is implemented by settifig ;  equal to
zero.

The largest eigenvaluer-of I'c . in Eq. (3), as well as
the corresponding eigenvect&(C), may be found by re-
quiring that the net current away from cluster sizassumes
the valuevPy(C). Using conservation of probability one eas-
ily shows that this may be expressed as

jer1c=Tci1cPo(C) =T ciPo(C+ 1) = v, Po(0),

c=<C
(5
Fpa-1Po(A-1)
V= (6)
E Po(c)
c=<A-1

wherejc,, ¢ is defined as the net current flowing fromto

C+1. This current may be approximated by

p
C

> exp- BF(c)]
c=1
VCX—,

> exd- BF(0)]

c=1
c=C,,

jc+1,c =9

LY

because the sum on the right-hand side of &g.is domi-
nated by the terms with smattvalues, for whichPy(c) is
approximately proportional to ekpBF(c)]. This may be

ing it in the form
P(C,t) = kPy(C)exd - vt] (12)

where k is a constant which represents the component of
P(C,0) alongPy(C) if P(C,0) is decomposed in terms of the
eigenfunctions of the master equation. This gives for the
probability S(t) that the system has not yet nucleated at time
t

for t — oo,

A-1

Sit)= >, P(C,t) =exff- ut—ty)] for t — oo,
C=1

(12)

wherety is called the delay time. The eigenfunctidi(C)
was given(with a different normalizationin Eq. (8):

14

Po(A= 1) a1 Pol)

P'(n) =

A-1

_S . exdBFm-Fo)

1—‘rml,m

: (13

with jm.1m given in Eq.(7). As a consequence of the condi-
tion of detailed balance, Edq4), the corresponding left ei-
genvector is obtained by multiplying'(n) by exd BF(n)],

or

- LAF(m)]

P =S (14

1—‘m+1,m

Notice that for small values of this is virtually independent

checked in hindsight against the solution obtained. With thif n, because only the largest values give important con-
approximation the equation may be solved recursively fottributions to the sum. Using the proper normalization of the

Po(c) in terms of Po(A-1) for c=A-2,A-3,..., with the
result

leading eigenfunction, and approximatif®{C,0) by & 4,
one now finds immediately thag follows from
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A-1

PO {exd- BFMTP (M)}
n=1

eXF{th] = A1 . (15)
> {exd- BF(M (¢ (M2

n=1

F(C)/J

Now, by subtracting unity on both sides, dividing by ap-
proximating sums ovem from n to A—1 by sums from 1 to
A-1, where appropriate, substituting E¢4) and using Eq.
(7) for jme1ms: ONE obtains

A—ln—l( Win) min[m,C,]  J PR S S S R
Sy —— S W(k)) 7(n) 0 100 200 300 400
{ = n=1me1 \ Dmer ™M) (5 (16) c
d= Al N ' FIG. 1. Free energy as a function of cluster size in the 64
> W) ¢'(n)] system a8J=0.56 andh=0.06 ), 8J=0.58 anch=0.080), and
n=1 BJ=0.53 andh=0.08+). The lines represent the Becker-Doring
with W(n) = exg - 8F(n)]. expression, Eq(18), with fitted valuess=0.93, 1.00, and 0.88, and

Fo=12.3, 11.9, and 13.4.

IV. SIMULATIONS AND RESULTS L .
lowed, we check that the free energy curve coincides with

For applying the above theoretical framework to nucle-the same curve, obtained with a lower value @,
ation times in the Ising model, the two ingredients required Figure 1 shows our measurements for the free energy ac-
are (i) the cluster free energids(C) and (ii) the transition cording to Eq.(17) as a function of cluster size, for some
ratesI'c, ¢ from cluster size< to C’. We obtain these two combinations of temperature and external field.
ingredients via two different computational tools. For large clusters, one may expect that classical nucle-
In all our simulations, we use a technique known as mul-ation theory can be used. At not too low temperatures the
tispin coding[20], which enables us to reach long simulation clusters on average are nearly circular in shape. The free
times and thus good statistics. All random numbers are gerenergy is then approximated by the Becker-Doring expres-
erated with a lagged Fibonacci generator, as provided in Re&ion[5]

20]. —
[20] F(C) = Fy+ 20V wC - 2hC, (18)
A. Cluster free energies where o is the excess free energy of the interface per unit

We measure the distribution of cluster sizes for variouslength’ anch the _strength of the external field.
Strictly speaking, in order to account correctly for the

values of 8 and h, in a system with 64 64 spins. We are . )
actually only interested in the distribution of clusters Sma”erdlfference between the free energies of the metastable and

than a certain siz&, which was discussed in Sec. Ill. There- th'e stable phase, one.should rgpla&:@by 2hC2m,-1),

fore we define a cutoff cluster siZe,,, which is typically with _msthe average spin per latttice site. At the temperatures
chosen to be 300. We modify our algorithm in the following con5|d<_ared_ here, however, is very CIOS? fo unity, so this
way: staring with a configuratiol§ we perform a fixed correction is very small. In two dimensions there are also
numberM of Monte Carlo steps, and measure the sizes of al hysical contributions to this term, resulting from the Gibbs-
the clusters of down-spins in the system. If there is a cluste homp:on feffec(tcorn'presgl?n of _tl_h? cluster undertthe influ-
with more thanC,., Spins we reject the new configuration €nce Of surface tensiomnd from Tolman, or curvature cor-

h =S Otherwi h fiqu- "ections[21]. We fitted Fy and o to the data in Fig. 1, and
and choose,;=S. Otherwise we accept the new configu dded the corresponding curves as lines in the same figure.

: : a
ration as ouiS,;. In all cases we add the sizes of the Clusters_l_he measurements are well fitted by the curves, as long as
in to a histogram. After many repetitions of this loop we N '

S 9 yrep P the cluster size is not too small. However as noted before by

find the f C) f ) . . RS
ind the free energy(C) from Shneidmaret al. [14], the surface tensions obtained in this

N(C way are larger than those given by the Onsager expression
,3F(C)=—|n< ( )>’ 17) y 9 9 y ger exp
N [22]

— —1
where(N(C)) is the average number of clusters of szen o=2J+ " Intanh(Bd), (19)

the system withN sites. valid for long horizontal or vertical interfaces, and zero ex-
If Crax is chosen too large, the various clusters in theternal field (see Fig. 2 At the temperatures we considered
system influence each other. In particular, excluded volumehe surface tension is known to be almost isotrd@ig|, so
effects inside and around large clusters suppress larger cluanisotropy effects cannot explain this difference. As sug-
ters in the metastable state more than smaller ones. As gested by Fig. 2 both field dependence of the surface tension
consequence the distribution of cluster sizes depends aand corrections due to the finite size of the clusters play a
Cmhax TO determine whether a certain value ©f, is al-  role here. Note that similar corrections for the surface tension
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FIG. 2. Ratio of the surface tension obtained by fitting the free

BJ
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energy curve and the theoretical value given in @), as a func-
tion of BJ. Different symbols denote different strengths of the ex-

ternal field: h=0.050), h=0.06J), h=0.071¢), h=0.08+), h
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o

FIG. 3. Monte Carlo measurements of the diffusion coefficient

per interface lengtly(BJ), as a function of inverse temperatysé.

on a finite cylinder are present already in Onsager’s exadtient neither depends on the external field nor on the shape

solution[22]. In Ref.[17] an explicit plot of this was given.

of the interface(straight or circulay, but only on the length

For a precise determination of nucleation rates these correef the cluster boundary, for which we useﬁc assuming
tions are quite important. They may easily cause a change at the shape of the cluster is almost circular.
a few orders of magnitude in the values of average nucle- This approximation neglects the possibility of having a

ation rates. We will address these issues in more detail in few positive spins inside the clusters, but at the temperatures
studied this will at most amount to a systematic underesti-
mate of the boundary length by a few percent. For large
clusters the assumption of circular shape should be very

separate pap¢4].

B. Interface diffusion coefficient

work of Sec. lll is the ratel'c,; ¢ of cluster growth. To

_ _ . . . good. From Eqgs(10) and(16) we see that the contributions
The second ingredient required in the theoretical framefrom small clusters to the expressions foandty are almost

negligible, and inaccuracy of the estimates of their boundary

estimate this rate we study the diffusion of a single interfac@engths is not very important. This then gives rise to a jump
in a system with anti-periodic boundary conditions in therate
absence of an external field, as describefllif]. The loca-
tion of the interface is obtained from the magnetizatdn
The diffusion coefficienD is defined as

D=

to depend linearly on the length of the interfege
D(B,L,BJ) =

g

t—o

(M(t) - M<0)]2>]
2t '

g(BI)B +c,

(20)

(21)

9(BJ) o\C

Feic= T

(22)

The factor 4 arises because the jumps in magnetization go by

units of 2. Alternatively, instead oF c.;c we could have

identified I'c ., throughD. The detailed balance condition
This diffusion coefficient is found, to a good approximation, (4) causes these quantities to be slightly different. However,
for C-values close to the free energy maximum, which are

weighted most strongly, their difference becomes very small.
In addition there will be some compensating effects, because

where the constart was added to allow for potential finite- for C=C, one had’c,; ¢>1I'c c+1 Whereas folC <C, this is
size effects. In an appendix we show that such correctiongist the other way around.
are to be expected indeed, on the basis of a simple model
calculation for a two-dimensional BCSOS model. One might
expect small corrections to E(1) due to the helical bound-
ary condition. However, as mentioned already, at the tem- To measure nucleation rates, we first bring the system into
peratures studied the surface tension is almost perfectly is@quilibrium in the presence of a magnetic field. At tire
tropic. Therefore the chief effect of the helical boundary=0, we then reverse all the spifsquivalent to an instanta-

conditions is an extension of the interface length/ BF+1.

C. Nucleation rates

neous reversal of the magnetic figlsb that the system is

The effect of this is exactly compensated by the fact that th@ear its metastable equiliborium. We measure the time the
relevant motion of the interface is not orthogonal to its av-system needs to reach the magnetization corresponding to
erage orientation, but under a small angle with it. The resultshe stable equilibrium.

for g(B,J) for various temperatures are plotted in Fig. 3.
To arrive at an estimate for the ral&.,,c for cluster

Nucleation has taken place as soon as a cluster has grown
well beyond the critical nucleus size. Once that happens, the

growth and shrinkage, we assume that the diffusion coeffirelatively small systems in our simulations will quickly
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rvrTrrTrTTyrTTTeTTT T T TABLE |. Measured value$r;) and estimated values) for
| the nucleation times in the 6464 system.
100 P E B h T T Tl T
i ] 0.51 0.04 1.8% 10° 2.26x10°  1.234
g t 1 0.51 0.05 3.3% 10° 3.84x10° 1.146
© b i 0.51 0.06 9.8 107 1.14x10°  1.163
: ] 0.52 0.04 1.0 10° 1.09x10°  1.019
[ ] 0.52 0.05 1.1%x 10 1.31x10* 1.153
- 7 0.52 0.06 2.8410° 3.57x10° 1.257
g eN\oo o o 0.52 0.07 8.5k 1¢% 1.09x10° 1.276
0 5000 10000 15000 20000 0.52 0.08 3.9& 107 4.49x 107 1.134
At [MCSS] 0.53 0.05 4.1% 10 479x 10  1.153
_ , ) 0.53 0.06 8.94 1C° 9.47x10°  1.059

FIG. 4 Histogram of the timét elapsed before_nucleatlon 0C- (53 0.07 2 3K 10° 2571 1.111
curs, at inverse temperatupd=0.54 and external field strength
=0.08, in a system with 64 64 sites. The straight line is a fit, given 0.53 0.08 8.9% 107 9.59x1C%  1.068
by n(At) ~ exp(At/1990. 0.54 0.05 1.7%10° 2.13x10° 1.228

0.54 0.06 2.9x 10¢ 3.11x10¢  1.071
equilibrate in the state in which most spins align with the0.54 0.07 6.6% 10° 7.27x10°  1.087
external field. Since monitoring the size of the biggest clustef.54 0.08 2.1%10° 2.32x10°  1.068
is computationally demanding, we monitor instead the totab.55 0.05 8.0X 10° 1.13x10°  1.410
magnetization, and conclude that nucleation has taken plaggss 0.06 9.5% 10¢ 1.08x10°  1.126
as soon as it has reached a value corresponding to the stablec 0.07 1.9% 10 208x10¢  1.054
equilibrium. - - - . 0.55 008 561  598x10° 1.070

We make a histogram of all the measured times.

Figure 4 shows that at long times the decay funcfi@n 0.55 0.09 2.0510° 217<10°  1.058
behaves a$(t) ~exp(-vd). Here, we focus on the long-time 9-96 0.05 4.0%10° 4.59x10°  1.140
behavior, and are specifically interested in the asymptoti®-56 0.06 3.7&10° 4.17x10°  1.103
nucleation ratevs. We obtain this quantity via a fitting pro- 0.56 0.07 5.8k 10 6.44x10"  1.109
cedure, in which we ignore the data up to a titpechosen  0.56 0.08 1.4& 10 1.57x10*  1.058
such thatf(t) shows exponential time behavior for t,. 0.56 0.09 4.9% 103 5.11x10° 1.038
Then we determine the tinté at which half of the remaining ¢ 57 0.06 14K 10P 1.36x10°  0.927
events ha_vle taken pla’ce. We then obtain the first nucleatlodri57 0.07 18&10° 198x10°  1.080
time 7= vs from T=(t' -tg)/In(2). In;tead we could hqve 0.57 0.08 41K 10° 440%10°  1.062
made a linear fit of all the data points beyotyl but this
makes no significant difference. Table | gives the measured°’ 0.09 L2410 1.24x10*  1.000
first nucleation timesy. In the same table, we also report the 0-57 0.10 4.0x10° 453x10°  1.128
estimated first nucleation times=((Nyv)™! with » as ob- 0.58 0.06 5.8 10° 6.60x10°  1.139
tained in Eq.(10) and(N,)==2_,N(C) the average number 0.58 0.07 6.1& 10° 5.72x10°  0.926
of clusters in the system, as determined from our simulatio®.58 0.08 1.1 10° 1.26x10°  1.143
data. Finally we also give the ratig/ . The table shows 0.58 0.09 3.0& 10" 3.11x10*  1.015
that, while the values of the first nucleation times span fouiy 53 0.10 1.1% 104 1.06x10* 0.938
decades in time, the e_stir_nated0 and measured first nucleatigysg 0.07 2 25 10P 248x10F  1.104
'grgt?esr agree mostly within 20%, and in many cases even g 0.08 3.4% 10 4995105 1.209

' 0.59 0.09 8.4% 10 8.36x10*  0.987
D. Short-time behavior 0.59 0.10 2.3x10% 2.47xX10* 1.068

Besides the long-time exponential behavior of the first0-60 0.08 1.0&10° 1.19x10°  1.145
nucleation probability, we also studied the deviations from0.60 0.09 2.0%10° 2.52x10°  1.229
this behavior at short times. To do so we solved the masted.60 0.10 5.8k 10 6.72x10*  1.156

equation(3) for the time evolution of one cluster numeri-
cally, with the initial condition that the cluster consists of a
single spin: P.ud1,t) that the cluster has grown beyond a certain size
_ Chax during timet. The corresponding probability distribu-
PC.O= .. 23 tion for the nucleation of one dfl. statistically independent
We then computed the cumulative probability distributionclusters aiC,,,, at timet, is given by
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the fits vary betweemy=228 and 239 MC time units. Also
the behavior at short times is well described by the theoret-
ical framework, as is evidenced in the bottom panel of Fig. 5.
For the case of the Becker-Doring form of the cluster free
energy, as given in Eq18) the delay time has been calcu-
lated before by Shneidmaet al. in Ref. [9], in the region
where A>C,. (These authors call it the lag timeUnder
these conditions our expressi@tt) can be shown to reduce

to
7 L 1/2
0 200 400 600 800 1000 ty= 4kBT—CX_[ A /A +In{2Bh(A-C)C} +c|, (25)
t [MCSS] 9(BINT Cy
TE ' ' with ¢ a constant of order unity. For largethis fully agrees
o i indeed with the expression of R¢f]. However, notice that
E Eq.(16) is very flexible. It holds for a wide range of forms of
0.01 _ the free energy function and for arbitrary valuesfoéind it
g can be evaluated numerically very easily.
0.001 L The comparison of nucleation probabilities at late times
was discussed in the preceding subsection.
0.0001 |-
ose———ten L V. DISCUSSION
0 100 200 300
t [MCSS] In this paper we showed that for two-dimensional Ising

models with spin-flip dynamics classical nucleation theory
FIG. 5. 1-P,,{t) obtained from the time evolution of one clus- provides an excellent description of nucleation time distribu-
ter (solid lineg according to the master equati(8) combined with  tions, provided a realistic description is used for the free
Eq. (24), and by direct simulation of systems with 832, 64  energy of the growing droplets. We determined this free en-
X 64, and 128& 128 spins(the dotted lines at fJ=0.54 andh  ergy from cluster size distributions in equilibrium Monte
=0.08. In both cases, the highest of the three curves corresponds ¢95r|g simulations and found that it may be fitted well by the
the smallest system, and the lowest one to the largest .system. T'Fecker-Dijring expression, provided one uses surface ten-
lower plot shows the same data, but focuses on short times.  gjons that are 10 to 20% higher than the surface tension of a
bulk interface at zero field. Similar conclusions have been
1 =PrudNe,t) =[1 =P 1,t)]Ne. (24)  reached by Shneidman, Jackson, and Befdly but the
present paper goes into much further detail in analyzing both
The quantityP,,{N.,t) should be equal to the cumulative the cluster size dependence of the free energy and the depen-
distribution of nucleation times, if we define nucleation asdence on cluster size and field strength of the effective jump
the first occurrence of a cluster 6f,,Spins anywhere in the rates occurring in the Becker-Déring equations. More re-
system. cently Auer and Frenkel10] studied crystal nucleation in
We have compared this result with the results of directcolloidal hard sphere systems and also determined cluster
simulations a{BJ=0.54 andh=0.08, for three different sys- free energies by monitoring the frequency of occurrence of
tem sizes: 3X 32, 64X 64, and 12& 128. In all cases the clusters of a given size. Like us they could fit the resulting
starting configuration was a system in which all spins arecurves quite well by a Becker-Ddring expression, with an
antiparallel to the external field. Within a few time steps thiseffective surface tension. In their case the excess over the
develops into a quasiequilibrium distribution for the small bulk surface tension at zero supersaturation is about 20% to
clusters. For the system sizes studied presently typical nucl&0%. They attribute the difference to a dengity chemical
ation times are in the order of a hundred time steps, so thpotentia) dependence of the interfacial tension between the
fact that we started from clusters of size zero rather thametastable and the stable state. In our case this corresponds
unity makes no real difference. Figure 5 shows the result¢o a magnetic field dependence. In Fig. 2 we see that such a
Here the parametdd, was determined in the same simula- dependence indeed appears to be present in our system, but
tions that were used to obtain the free energy as a function afuite definitely there are other corrections, due to finite clus-
cluster size. ter size, and there must also be size-independent Gibbs-
The asymptotic slopes of the curves in the top panel offThompson and Tolman corrections. This will be discussed in
Fig. 5 correspond to the nucleation rates. The times at whicimore detail in a separate paged], together with results for
straight-line fits to these curves cross R,5.=1 correspond three-dimensional systems.
to the waiting timesy, as introduced in Eq(12). There is A point one may question is whether the assumption of
excellent agreement between the direct simulations and thiedependent noninteracting clusters holds even for clusters of
parameter-free theoretical framework: The theoretical predicsmall size. This may indeed be doubted, but fortunately, at
tion obtained with Eq(16) is t;=234 MC time units, while least for the asymptotic nucleation frequen@N.) this is
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not really relevant. One may choose to define as clusters oniyto account, since our calculation of the diffusion coefficient
those clusters that have a size=my,, with my chosen such is done for a fluctuating interface around a cylinder. But it is
that clusters of this size already are very rare, but stillby no means certain that the fluctuations of a circular inter-
exfd BF(mg)]<exd BF(C,)]. From Eqs(10) and(17) itthen  face are in all aspects comparable to those of the interface
follows that around the cylinder.

It may happen that a cluster splits up or that two clusters

S merge, corresponding in our theoretical framework to non-
2N zero transition rate¥'c c.; andI'c,i c with i>1. This effect
T C;l—y, also is partly accounted for through the numerical determi-
o A nation of the diffusion constant on a cylinder, but especially
> Ne for larger clusters the difference in geometry may cause ad-
Mo ditional effects. However, these will only become important

since the terms wittm<my, in the first sum in Eq(10)  in systems that contain a sizable density of clusters of spins
basically do not contribute. As a consequence of this théligned with the external field. Hence, also this approxima-
asymptotic nucleation rate in the system is independent dfon can be trusted least near the critical point.
the choice ofm,. No memory effects are accounted for explicitly. For spin-
For the short-time nucleation rate the free energy of smalfliP dynamics, memory effects will chiefly be due to the in-
clusters is important indeed, especially if one starts from gluence of shape fluctuations on the transition rates. Since
state of zero magnetization. However, if one starts from @hape fluctuations on larger length scales will decay only
quasiequilibrium distribution representing the state after #lowly, these may be fairly long-lasting effects. Again, our
sudden reversal of the magnetic field, the short-time behavioiay of determining the diffusion coefficient will take many
will be dominated by clusters that were fairly large at theOf these effects into account implicitly, but memory effects
outset and again Eq(17) may be trusted. InM25] Van involving large shape fluctuations may b(_a different fc_)r the
Beijeren gave explicit expressions for the short-time behavPresent cluster geometry. For magnetization conserving dy-
ior, which may be used if the latter is well approximated bynamics (consisting, e.g., of local spin exchangesuch
a diffusion equation in an external potential. In the presenftronger memory effects exist due, e.g., to the effect that a
case these cannot be used, since on the relevant time scaf¥n that is released from a large cluster has high probability
the hopping process between neighboring cluster sizes is nf réattaching to it soon. .
well-approximated by a diffusion process. And since the Under conditions in which the effects above are negli-
hopping rates depend on cluster size no exact expressions f@tole, our theoretical framework is capable of estimating
the short-time behavior are available. But the numerical sonucleation rates with an accuracy in the range of 20%. The
lution of the master equatio(8) gives a very good agree- small systematic overestimation by about 10% of the nycle-
ment with the results from our Monte Carlo simulation of the &tion time by theory may have several causes. The radius of
nucleation process, as was shown in Fig. 5. a cluster will be slightly larger than our estimate because
Besides the free energy as a function of cluster size oupSPecially a large cluster will typically contain a few holes in
calculations require the transition ratd& .., between IS interior. Since the equilibrium magnetl_zatlon is alwgys
neighboring values of the cluster size. These we estimated Jrger than 0.92 for the temperatures studied, the density of
setting them proportional to the mean circumference of dacancies in the cluster is less than 4%, and hence the in-
cluster, determining the proportionality constant from thecrease in interface length due to holes is less than 2%. Also
simulated mobility of a straight interface in cylindrical ge- the assumptions that the diffusion coefficient is independent
ometry and imposing the detailed balance conditién of the magneth field and of the orientation of the mFerface
In our estimations we have been using a number of as!;nay be n-Ot ent|r6|y correct. At low tempe_ratures a dlagonal
sumptions, whose validity is not guaranteed under all condilnterface is much more mobile than a straight one, but at the
tions. fairly elevated temperatures studied here one would not ex-
Strong fields should modify the diffusion coefficient; this Pect a large orientation dependence. Further there could be
effect is neglected. The freedom to modify the field strengtteffects from the possibility of cluster splittings and mergings,
within the metastable region is limited though, and longthough some of these are accounted for through our numeri-
nucleation times, as seen mostly in real experiments, requir@@l determination of the diffusion constant on a cylinder.
weak fields. We are currently extending our investigations to two-
The diffusion coefficient is assumed to be determined bydimensional Ising systems with magnetization-conserving
the size of the cluster alone, and is calculated on the assumpynamics as well as to three-dimensional Ising systems.
tion that its shape is strictly spherical. This requires that the
temperature is not too low, because at very low temperatures
the equilibrium shape of the cluster is more square than cir-
cular [23]. (This however, is an effect that may easily be To illustrate the dependence of the interface diffusion co-
corrected for without making any basic changes in theefficient on the system size and on the type of boundary
theory) On the other hand the temperature should not be togonditions, as discussed in Sec. IV B, we consider diffusion
close to the critical temperature for shape fluctuations to bén a two-dimensional BCSOS model with stochastic dynam-
reasonably small. To some extent these fluctuations are takées. This model is much simpler than the Ising model and

APPENDIX
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all configurations with the proper values of and n; one
easily sees that this satisfies the detailed balance conditions
for the chosen jump rates. The diffusion coefficient may now
be expressed as

D(m,n) =TI'ng(n,m), (A1)

with I" the rate of evaporation and deposition, anth,m)
the average number of peak sites or valley sites in the sys-
h(x) tem. Forng(n,m) a simple recursion relation is obtained
: through the following reasoning: all configurations with
boundary conditiongm,n) may be constructed from all con-
figurations with(m,n-1) by adding a down segment at the
+ position just following one of then up segments(In fact
each new configuration is obtained precisetytimes this
way, but that does not change the reasonitffghe segment
0 1 L is added at the end of a cluster of up segments it does not
X —= increase the number of peaks. On average therengre
—-1,m) positions where this will happen. In all other cases
the number of peaks is increased by one. As a result one
obtains the recursion relation

FIG. 6. Example of an interface configuration in the two-
dimensional BCSOS model, with horizontally helical and vertically
antiperiodic boundary conditions.

allows for an explicit determination of the diffusion constant ng(n,m =ng(n-1,m +1- Ng(n=1.m)
as a function of system size and helicity conditions. It is m
illustrated in Fig. 6. -1
An interface consists of a sequence of straight segments =1+ ng(n—1,m). (A2)

with unit length, oriented with an angle &f45° (or “up”) or

—45° (or “down”) with respect to the horizontal axis; it sepa- One easily finds that this recursion relation is solved by
rates a completely filled crystal phase from a completely

empty vacuum. The interface dynamics consists of evapora- _ [ (m— 1)”}
. ) 8 ) - ng(n,m=m| 1-{——| |.
tion of crystal sites at “peak sitegtonsecutive segments 9

oriented up and downand the deposition of such units at ) o

“valley sites” (consecutive segments oriented down ang up Whenmiis large this yields

When the rates of evaporation and of deposition are equal, 1 1
the interface performs normal diffusion in the vertical direc- ng(n,m) = m(l - —) +—,
tion, corresponding to a diffusive time evolution of the total e/ 2
mass below the interface. The diffusion constant for this profg, periodic boundary conditioné=m), and
cess is easily seen to be equal to the average number of peaks

(equal to the number of valleys the interface. The deter- 1
mination of this number in equilibrium is a simple combina- ng(n,m) = m(l - ;) "%
torial problem. However, one should treat the boundary con-

ditions properly. In the case of periodic boundary conditionsfor helical boundary conditions with=mz+1. For the Ising

in the horizontal direction, the total numbers of segments upgnodel these results can be applied directly to the case of
and down have to be equal. Helical boundary conditions magloped boundaries at very low temperatures, but for higher
be imposed by requiringn segments up and segments temperatures calculations would become much harder. Our
down, with m#n; we will call these boundary conditions main point here is to show that generically a constant term is
(m,n). The equilibrium distribution assigns equal weights toto be expected in Eq21), in addition to a linear one.
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